

JPEG 2000 Implementation Guide

James Kasner

NSES – Kodak

james.kasner@kodak.com

+1 703 383 0383 x225

Why Have an Implementation Guide?

- With all of the details in the JPEG 2000 standard (ISO/IEC 15444-1), it is still incomplete.
- Why?
 - The standard describes a *decoder*
 - It makes non-normative remarks regarding encoders
 - Implementer is left to fill in the blanks
 - Standards are notoriously short on examples
 - Things are not always as clear as we would like
- Implementation Guide was created to address these issues
 - Find it at: http://164.214.2.51/protected/ntb/J2K_Guide_WD1.pdf
 - This is the protected area of the NTB website
 - For access look at http://164.214.2.51/ntb/baseline/toc.html
 - Even though it's a working draft, it's a very good document

Areas Where the Guide Helps

- Further/alternate explanation of the JPEG 2000 standard
 - Packets headers and tag trees
- Examples to illustrate various processes in JPEG 2000
- Things you need to know to make an encoder
 - Rate and distortion estimation procedures for rate control
 - Layer formation
 - Computation of 9-7I wavelet subband energy weights
 - Design of quantization factors for 9-7I wavelet
 - Application of human visual weights to quantization
- In the future we plan to include coding improvements for specific data types

- Sections 2.1 and 2.2
 - Give overview of the JPEG 2000 processing flow
 - Introduction to JPEG 2000 nomenclature and constructs
 - Tiles, Reference grid, Resolution and decomposition levels
 - Code blocks, Precincts, Packets, Layers and coding passes
- Section 2.3
 - Describes major processing sections in JPEG 2000
 - High level image and tile processing procedures
 - Reference grid equations and interrelationship between
 - Image and tile size/offsets
 - Resolution levels and wavelet subbands
 - Component subsampling
 - Computing the size of a tile-component
 - Computing the number of pixels/coefficients

- Section 2.3 (continued)
 - Wavelet transform processing
 - Mechanics of lifting with examples
 - Signal flow graphs
 - Interleave and de-interleave procedures
 - Determining convolution equivalent wavelet synthesis filters (9-7I)
 - Used in design of quantization factors for 9-7I wavelet
 - Small tiles with vanishing dimension in wavelet decompositions
 - Leads to empty or one dimensional subbands
 - Quantization
 - Explicit quantization of 9-7I wavelet coefficients
 - Forward and inverse quantization procedures
 - Inverse quantization when all bitplanes have not been received
 - Implicit quantization of 5-3R wavelet coefficients
 - Forward and inverse quantization procedures
 - Inverse quantization when all bitplanes have not been received

- Section 2.3 (continued)
 - Quantization (continued)
 - "Base step size" quantization for 9-7I wavelet
 - Design technique that takes single quantization step and tailors it individually for each wavelet subband
 - Computation of energy weights
 - Needed for base step size design
 - Based on convolution equivalent wavelet synthesis filters
 - Determination of energy weights in the presence of small tiles (update coming for section)
 - Modification of procedure when using HVS weights
 - Arithmetic entropy coder
 - Various coding passes
 - Derivation of contexts
 - Different modes

- Section 2.3 (continued)
 - Rate-distortion estimation
 - Necessary for proper layering
 - Rate estimation
 - More accurate method to compute number of bytes out of arithmetic coder when truncating at the end of a coding pass
 - Distortion estimation
 - Binary search layer formation algorithm
 - Better explanation of packet headers and tag trees
 - Pseudo code and examples

Summary

- Implementation guide is a companion to the standard
 - Tried to make the more difficult sections easier to understand
 - Best to have both on hand
 - Will continue to update the guide
- If you need further help
 - Taubman&Marcellin, JPEG2000: Image Compression Fundamentals,
 Standards and Practice, KAP, 2001. ISBN 0-7923-7519-X